

An Efficient Parallel Solver for LES-DEM Simulation of Fluidized Bed

Fatima Ez-Zahra El Hamra*, Aimad Er-raiy[†], Radouan Boukharfane*

* Mohammed VI Polytechnic University (UM6P), MSDA Group, Benguerir, Morocco

[†] King Abdullah University of Science and Technology (KAUST), ECRC, Thuwal, KSA

Contents

- 1. Research context
- 2. DEM-LES FOR FLUIDIZED BED
- 3. Parallelism management
- 4. Small scale bubbling fluidized bed
- 5. Parallel Performance
- 6. Conclusion and perspectives

Research context

EARCH CONTEXT DEMI-LES FOR FLUIDIZED BED PARALLELISM MANAGEMENT SMALL SCALE BUBBLING FLUIDIZED BED PARALLEL PERFORMANCE CONCLUSION AND PERSPECTIVE

OOOOO OOO OOO OOO

Context and objectives

Particle-laden flows are omnipresent...

- \rightarrow Industry: biomass combustion, chemical industry, pharmaceutical, ...
- → Research: study of sedimentation, snow avalanche, and rheology.

... and still raise numerous questions

- \rightarrow Experiments: measurement implementation.
- \rightarrow Scale-up from lab-scale to industrial scale is a troublesome endeavor¹.

Objectives of the present study

- Develop Parallel Eulerian—Lagrangian solver for 3D simulation of fluidized bed.
- Assess CFD-DEM capability to predict the instantaneous motion of particles.

Rüdisüli, M., Schildhauer, T. J., Biollaz, S. M., & van Ommen, J. R. (2012). Scale-up of bubbling fluidized bed reactors-A review. Powder Technology, 217, 21-38

DEM-LES for fluidized bed

Fluidized bed: A numerical problem

Discrete-element method (DEM)

→ Newton's second law

$$\begin{cases} m_{\rm p} \frac{\mathrm{d} u_{\rm p,i}}{\mathrm{d} t} = f_{\rm p,i}^{\rm inter} + f_{\rm p,i}^{\rm col} + m_{\rm p} \mathfrak{g}_i, & \text{with } \frac{\mathrm{d} x_{\rm p,i}}{\mathrm{d} t} = u_{\rm p,i} \end{cases}$$
(1a)
$$\mathscr{I}_{\rm p} \frac{\mathrm{d} \omega_{\rm p,i}}{\mathrm{d} t} = \mathscr{M}_{\rm p,i}^{\rm drag} + \mathscr{M}_{\rm p,i}^{\rm col}$$
(1b)

$$f_{\mathrm{p},i}^{\mathsf{inter}} \approx \mathscr{V}_{\mathrm{p}} \partial_{j} \tau_{ij} + f_{\mathrm{p},i}^{\mathsf{drag}} \approx -\mathscr{V}_{\mathrm{p}} \partial_{i} \mathfrak{p}^{\textcircled{C}} + f_{\mathrm{p},i}^{\mathsf{drag}}$$

- Particle mass $m_{\rm p} = \pi \varrho_{\rm p} d_{\rm p}^3/6$
- Particle-particle and particle-wall repulsion force $\mathbf{f}_{n}^{\text{col}}$
- Force exerted on a single particle p by the surrounding fluid f_{D}^{inter}
- Drag and collision moments $\mathcal{M}_{p,i}^{drag}$ and $\mathcal{M}_{p,i}^{col}$

Collision modelling

✓ Particle-particle and particle-wall collisions are modeled using the Adaptive Collision Time Model (ACTM)²

² Kempe, T., & Fröhlich, J. (2012). Collision modelling for the interface-resolved simulation of spherical particles in viscous fluids. Journal of Fluid Mechanics, 709, 445-489.

Large-eddy simulation (LES)

→ Filtered NS equations

$$\begin{cases} \partial_{t} \left(\theta_{\widehat{f}} \overline{\varrho_{\widehat{f}}} \right) + \partial_{i} \left(\theta_{\widehat{f}} \overline{\varrho_{\widehat{f}}} \widetilde{u_{\widehat{f},i}} \right) = 0, \\ \partial_{t} \left(\theta_{\widehat{f}} \overline{\varrho_{\widehat{f}}} \widetilde{u_{\widehat{f},i}} \right) + \partial_{j} \left(\theta_{\widehat{f}} \overline{\varrho_{\widehat{f}}} \widetilde{u_{\widehat{f},i}} \widetilde{u_{\widehat{f},j}} \right) = -\partial_{j} \overline{\mathfrak{p}} + \partial_{j} \overline{\varrho_{\widehat{f}}} \widetilde{u_{\widehat{f},i}} + \overline{\tau_{ij}}^{\text{sos}} + \theta_{\widehat{f}} \overline{\varrho_{\widehat{f}}} \mathfrak{g}_{i} + \mathcal{F}_{i}^{\text{inter}} \end{cases}$$
(2b)

$$m{\mathscr{F}}^{\mathsf{inter}} = \sum_{p}^{\mathcal{N}_{\mathrm{p}}} \xi(|m{x} - m{x}_p|) \, \mathbf{f}_p^{\mathsf{inter}}$$

- where θ_f, ρ_f, and u_f are the fluid-phase volume fraction, density, and velocity, respectively.
- The force \mathbf{f}_{p}^{inter} exerted on a single particle p by the surrounding fluid is related to the interphase exchange term

- ⇒ Subgrid-scale modelling
 - ✓ The volume-filtered stress tensor

$$\overline{\tau_{ij}} = \mu \left[\partial_i \overline{\mathfrak{u}_{\mathfrak{f},j}} + \partial_j \overline{\mathfrak{u}_{\mathfrak{f},i}} - \frac{2}{3} \partial_i \overline{\mathfrak{u}_{\mathfrak{f},i}} \delta_{ij} \right] + \mathscr{R}_{\mu,ij}$$

 $m{\prime}$ Effective viscosity μ^* to account for enhanced dissipation

$$\mathscr{R}_{\mu,ij}\approx\mu^*\left[\partial_i\overline{\mathfrak{u}_{\mathfrak{f},j}}+\partial_j\overline{\mathfrak{u}_{\mathfrak{f},i}}-\frac{2}{3}\partial_i\overline{\mathfrak{u}_{\mathfrak{f},i}}\delta_{ij}\right]$$

✓ SGS eddy viscosity

$$\mu^{\text{SGS}} = \overline{\varrho} \left(C^{\text{SGS}} \Delta \right)^2 \sqrt{2 \overline{S}_{ii} \overline{S}_{jj}}$$

Some Numerical details

- Projection method based on fractional time steps developed by Chorin ³ and improved by Kim & Moin ⁴.
 - ✓ Fourth-order central scheme is used for the spatial integration
 - ✓ Third-order accurate semi-implicit Crank-Nicolson scheme is employed for time integration.
- Poison equation is solved using the <u>Livermore's Hypre library</u> with the PCG (pre-conditioned conjugate gradient) method.
- lacktriangle The normalized drag force coefficients ${\mathbb F}$ are modeled using Tenneti's model 5

$$\mathbb{F}^{\mathtt{TENNETI}}\left(\theta_{\mathfrak{f}}, \mathrm{R}\mathfrak{e}_{\mathrm{p}}\right) = \mathbb{F}^{\mathtt{WY}}\left(\theta_{\mathfrak{f}}, \mathrm{R}\mathfrak{e}_{\mathrm{p}}\right) \theta_{\mathfrak{f}}^{1.65} + \theta_{\mathfrak{f}} \mathbb{F}_{1}^{\mathtt{TENNETI}}\left(\theta_{\mathfrak{f}}\right) + \theta_{\mathfrak{f}} \mathbb{F}_{2}^{\mathtt{TENNETI}}(\theta_{\mathfrak{f}}, \mathrm{Re}_{\mathrm{p}})$$

with

$$\left\{ \begin{array}{l} \mathbb{F}_{1}^{\text{TENNETI}}\left(\theta_{\mathfrak{f}}\right) = \frac{5.81(1-\theta_{\mathfrak{f}})}{\theta_{\mathfrak{f}}^{3}} + \frac{0.48(1-\theta_{\mathfrak{f}})^{1/3}}{\theta_{\mathfrak{f}}^{4}} \\ \mathbb{F}_{2}^{\text{TENNETI}}(\theta_{\mathfrak{f}}, \mathrm{Re_{p}}) = (1-\theta_{\mathfrak{f}})^{3}\mathrm{R}\mathfrak{e}_{\mathrm{p}}\left[0.95 + \frac{0.61(1-\theta_{\mathfrak{f}})^{3}}{\theta_{\mathfrak{f}}^{3}}\right] \end{array} \right.$$

³ Chorin, A. J. (1968). Numerical solution of the Navier-Stokes equations. Mathematics of computation, 22(104), 745-762.

⁴ Kim, J., & Moin, P. (1985). Application of a fractional-step method to incompressible Navier-Stokes equations. Journal of computational physics, 59(2), 308-323.

⁵ Tenneti, S., Garg, R., & Subramaniam, S. (2011). Drag law for monodisperse gas-solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres International journal of multiphase flow. 37(9). 1072-1092.

Parallelization strategy

Parallelization strategy

→ Schematic view of two-dimensional decomposition of particles with 4 processors

Parallel processing and data-structure update

```
begin
    Reconstruct: label Particle P
    hotpart false
    Create an empty list {\cal S}
   if contour particle label changes at sub-domaine boundary then
        activate particle as a hot particle; hotpart ← true
    end
    Ghost mappings: Particle
   if there is any hot ghost particle then
       add it as a seed to the list S
   end
    Global: reduce operation on hotpart
    while hotpart do
        Reconstruct label Particle \mathbb P using flood fill from the seeds in \mathcal S
        Empty: S
        Ghost mappings: Particle
       if there is any hot ghost particle then
           add it as a seed to the list S
       end
    end
```

F F Fl Hamra A Fr-raiv & R Boukharfane

Small scale bubbling fluidized bed: Numerical setup

Properties	Müller et al. ⁶	Van Wachem <i>et al.</i> ⁷		
Fluid phase				
Fluid density ϱ_f [kg/m ³]	1.2	1.28		
Fluid viscosity μ [Pa·s]	1.8×10^{-5}	1.7×10^{-5}		
Superficial gas velocity \mathfrak{u}_{∞} [m/s]	0.6 - 0.9	0.9		
Solid phase				
Number of particle	9240	4080		
Particle diameter d_p [mm]	1.20	1.545		
Particle density ϱ_p [kg/m ³]	1000	1150	* 1 1 1 1 1 1 1 1 1	
Inter-particle restitution coefficient $\mathfrak{e}_{ ext{dry}}$	0.98	0.90		
Particle-wall restitution coefficient $\mathfrak{e}_{\mathrm{dry}}$	0.98	0.90	Walls	
Inter-particle restitution coefficient μ_c	0.1	0.3	20 Mil 20 2	7
Particle-wall friction coefficient μ_c	0.1	0.3		Š.
Geometry and Mesh				
Bed $L_x \times L_y \times L_z$ [mm ³]	44 × 288 × 10	90 × 450 × 8	v	
Grid number $\mathcal{N}_{\scriptscriptstyle X} imes \mathcal{N}_{\scriptscriptstyle Y} imes \mathcal{N}_{\scriptscriptstyle Z}$	16 × 120 × 4	33 × 168 × 3	A B	
Non-dimensional parameters				
Particle Reynolds number $\mathcal{R} \mathfrak{e}_p$	48, 72	104.7		Inle
Stokes number $\mathcal{S}t$	2.66 – 4	5.81	X	
Archimedes number $\mathcal{A}r$	6.27×10^{4}	1.84×10^{5}		-
Galileo number Ga	250.41	429.03	₹ Lx	

⁶ Müller, C. R., Holland, D. J., Sederman, A. J., Scott, S. A., Dennis, J. S., & Gladden, L. F. (2008). Granular temperature: comparison of magnetic resonance measurements with discrete element model simulations. Powder Technology, 184(2), 241-253.

⁷ Van Wachem, B. G. M., Van der Schaaf, J., Schouten, J. C., Krishna, R., & Van den Bleek, C. M. (2001). Experimental validation of Lagrangian-Eulerian simulations of fluidized beds. Powder Technology, 116(2-3), 155-165.

Small scale bubbling fluidized bed: Qualitative analysis

Small scale bubbling fluidized bed: Quantitative analysis

Parallel performance on ASCC cluster

- lacktriangle A rectangular fluidized bed of 8 million particles and of dimensions $0.1 \times 0.4 \times 0.1$ [m³].
- Uniform mesh is used with the cell size of 1.0 [mm], resulting in a total of 4 million cells in the LES grid.

Speedup factor

$$\mathfrak{s}(\mathfrak{n}_{\mathsf{proc}}) = \frac{\mathsf{Time}(\mathsf{Serial})}{\mathsf{Time}(\mathfrak{n}_{\mathsf{proc}})}$$

➡ Efficiency

$$\mathfrak{e}(\mathfrak{n}_{\mathsf{proc}}) = \frac{\mathsf{Time}(\mathsf{Serial})}{\mathfrak{n}_{\mathsf{proc}}\mathsf{Time}(\mathfrak{n}_{\mathsf{proc}})}$$

Few conclusions and many perspectives

Conclusions

- ✓ A new solver coupling DEM and LES using parallelization strategies is developed.
- ✓ A thoroughly verification is performed.
- ✓ The results are agreeably compared with available measurements data.
- ✓ Good stability and high performance of the parallelization strategy.

Perspectives

- Implementation of the particles feature complex geometries with a wide range of size distributions.
- Consideration of heat transfer model.
- → Hybrid MPI/OpenMP or MPI/GPU framework.
- → And so many other things to do ...

Thanks for tuning in! Please leave comments & questions

Acknowledgments
African SuperComputing Center

