

A Level-Set Immersed Boundary Method For Simulating Flows Around Cylinders In Tandem And Side-By-Side Arrangements

Radouan Boukharfane & Saad Benjelloun

Mohammed VI Polytechnic University (UM6P), MSDA Group, Benguerir, Morocco

Contents			
0000	000	000000	00
Immersed boundary method / Level set method	Numerical solver	Numerical results	Conclusion and perspectives

1 Immersed boundary method / Level set method

2 Numerical solver

3 Numerical results

4 Conclusion and perspectives

Immersed boundary method / Level set method

Immersed	boundary	method /	Level	set	method
0000					

Numerical results

Conclusion and perspectives

Immersed boundary method

Simulate flows on grids that de not conform to the shape of the boundaries

Allow practitioners to side-step costly mesh generation process

- Arbitrary geometry is superimposed over a uniformly Cartesian grid
 - ✔ Apply a boundary closure rule to governing equations
 - ✔ Block-structure allows for simple AMR to resolve structures near boundary
- Simple, structured data layout with fixed spacing has favorable characteristics for HPC compared with e.g. unstructured approach
- Challenges
 - ✔ Reduction of order-of-accuracy at boundaries
 - ✔ Numerical instability at boundaries since it can not capture smoothly the interface
 - Errors to the interpolation of kernels

Immersed	boundary	method /	Level set	method
0000				

Numerical results

Conclusion and perspectives

Accurate Conservative Level Set Approach

- The interface is defined as zero level set of a distance function $\phi(x, t)$ from the interface.
 - \checkmark The level set scalar is assumed to be a signed distance function to the interface

$$\phi(\mathbf{x}, t) = \begin{cases} -d & \text{inside the immersed solid} \\ 0 & \text{at the fluid-solid interface} \\ +d & \text{inside the fluid} \end{cases}$$

The conservative level set approach defines the phase interface to be the $\psi(\mathbf{x}, t) = 0.5$ isosurface of

$$\psi(\mathsf{x},t) = rac{1}{2} \left(anh\left(rac{\phi(\mathsf{x},t)}{2arepsilon}
ight) + 1
ight),$$

 $\checkmark \psi(\mathsf{x},t)$ is transported via the material evolution equation

$$\frac{\partial \psi}{\partial t} + \nabla \cdot (\psi \mathfrak{u}) = 0.$$

Immersed boundary method / Level set method	Numerical solver	Numerical results	Conclusion and perspectives
0000	000	000000	00

Accurate Conservative Level Set Approach

 Re-initialization is used to restore ψ to a hyperbolic tangent profile after transport (Chiodi and Desjardins, 2017; Sahut et al., 2020)

$$\frac{\partial \psi}{\partial \tau} = \nabla \cdot \left[\frac{1}{4 \cosh^2 \left(\frac{\phi_{\rm map}}{2\epsilon(x)} \right)} \left(\nabla \phi_{\rm map} \cdot n_{\rm FMM} - n_{\rm FMM} \cdot n_{\rm FMM} \right) n_{\rm FMM} \right]$$

with

- $\phi_{\max}(\mathbf{x}, \tau) = \epsilon(\mathbf{x}) \log\left(\frac{\psi(\mathbf{x}, \tau)}{1 \psi(\mathbf{x}, \tau)}\right)$ is the inverse of the conservative level set function.
- n_{FMM} is computed as

$$n_{\rm FMM}(\boldsymbol{x}, t) = \frac{\nabla \phi_{\rm FMM}(\boldsymbol{x}, t)}{\|\nabla \phi_{\rm FMM}(\boldsymbol{x}, t)\|}$$

with $\phi_{\rm FMM}$ a distance function computed from a Fast Marching Method algorithm

➡ The construction of φ_{FMM} removes all oscillatory behaviors of ψ in the computation of normals.

Immersed boundary method / Level set method	Numerical solver	Numerical results	Conclusion and perspectives
0000	000	000000	00
NUMBER OF A DESCRIPTION			

In each phase, the material properties are constant, which allows to write $\varrho = \varrho_s$ in the solid immersed body, while $\varrho = \varrho_f$ in the fluid, and $\mu = \mu_s$ in the solid and $\mu = \mu_f$ in the fluid.

 $\frac{\partial \varrho}{\partial t} + \mathbf{u} \cdot \nabla \varrho = \mathbf{0}$

$$\frac{\partial \mathfrak{u}}{\partial t} + (\mathfrak{u} \cdot \nabla)\mathfrak{u} = -\frac{1}{\varrho} \nabla \mathfrak{p} + \frac{1}{\varrho} \nabla \cdot \left(\mu \left[\nabla \mathfrak{u} + \nabla \mathfrak{u}^{\intercal} \right] \right),$$

- At the interface, the material properties are subject to a jump that is written $[\varrho]_{\Gamma} = \varrho_f - \varrho_s$ and $[\mu]_{\Gamma} = \mu_f - \mu_s$.
- The velocity field is continuous across the interface, $[\mathfrak{u}]_{\Gamma} = 0$.
- The existence of the pressure jump induces a discontinuity in the pressure at the interface Γ, and one can write

$$[\mathfrak{p}]_{\Gamma} = \sigma \kappa + [\mu]_{\Gamma} \mathbf{n}^{\mathsf{T}} \cdot \nabla \mathfrak{u} \cdot \mathbf{n}.$$

■ The solid-fluid coupling is achieved due to the Ghost-Fluid Method (GFM)

0000	000	000000	00
Numerical solver			

- Projection method based on fractional time steps developed by Chorin (1968) and improved by Kim and Moin (1985).
 - ✔ Fourth-order central scheme is used for the spatial integration
 - ✔ Third-order accurate semi-implicit Crank-Nicolson scheme is employed for time integration.
 - Poison equation is solved using the Livermore's Hypre library with the PCG (pre-conditioned conjugate gradient) method.

Numerical results

Immersed boundary method / Level set method	Numerical solver	Numerical results	Conclusion and perspectives
Numerical results			

- The downstream cylinder is located at 10*D* from the inflow boundary, while the upstream cylinder is positioned at 10*D* from outgoing boundary.
- A sponge layer to damp out the possible reflection of pressure fluctuations at the outlet.
- $\blacksquare \ \mathcal{R}e = \varrho \mathfrak{u}_{1,\infty} \mathcal{D} / \mu = 200$
- $\quad \ \ 1.5\mathcal{D}\leq\ell\leq4.0\mathcal{D}$
- $\mathcal{N}_x \times \mathcal{N}_y = 800 \times 300$

Immersed	boundary	method	Level	set	method	
0000						

Numerical results

Conclusion and perspectives

Numerical results

(a) $\ell/\mathcal{D} = 1.5$

(b) $\ell/\mathcal{D} = 2.0$

Immersed	boundary	method	Level	set	method	
0000						

Numerical results

Conclusion and perspectives

Numerical results

Immersed	boundary	method	Level	set	method	
0000						

Numerical results

Conclusion and perspectives

Numerical results

(a) $\ell/\mathcal{D} = 1.5$

(b) $\ell/\mathcal{D} = 2.0$

(c) $\ell / D = 3.0$

(d) $\ell/\mathcal{D} = 4.0$

Immersed	boundary	method	Level	set	method	
0000						

Numerical results

Conclusion and perspectives

Numerical results

Conclusion and perspectives

Immersed	boundary	method	/ L	.evel	set	method	
0000							

Numerical results

Conclusion and perspectives

Conclusion and perspectives

- The accurate conservative level set with an important improvement of the modification of the re-initialization step is used for the two-way coupling of a fluid with rigid bodies.
- The performance of this method has been proven to correctly simulate flow over two cylinder in tandem and side-by-side arrangement
 - ✓ The results of the mean drag and lift coefficients and the Strouhal number were compared with other author's results.
 - offer quite promising perspectives for future applications to more complex industrial problems.

Thank you for your kind attention © ! Questions ?

Acknowledgments

References

- Chiodi, R. and O. Desjardins (2017). "A reformulation of the conservative level set reinitialization equation for accurate and robust simulation of complex multiphase flows". In: *Journal of Computational Physics* 343, pp. 186–200.
- Chorin, A. J. (1968). "Numerical solution of the Navier–Stokes equations". In: Mathematics of Computation 22.104, pp. 745–762.
- Kim, J. and P. Moin (1985). "Application of a fractional-step method to incompressible Navier–Stokes equations". In: *Journal of Computational Physics* 59.2, 308–323.
- Sahut, G. et al. (2020). "Evaluation of Level Set reinitialization algorithms for phase change simulation on unstructured grids". In: *La Houille Blanche* 2, pp. 43–48.