

AIAA - SciTech 2021 Jan 11 - 15, Virtual Event

Compressibility effects on homogeneous isotropic turbulence using Schur decomposition of the velocity gradient tensor

R. BOUKHARFANE, A. ER-RAIY & M. PARSANI

KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY (KAUST)
EXTREME COMPUTING RESEARCH CENTER (ECRC)
ADVANCE ALGORITHM AND NUMERICAL SIMULATIONS LABORATORY (AANSLAB)
THUWAL, KINGDOM OF SAUDI ARABIA

January 19, 2021

Copyright o by R. Boukharfane/ECRC-KAUST. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

OVERVIEW

- MOTIVATION & PURPOSE
- NUMERICAL METHODS & DNS DATABASE
- NUMERICAL RESULTS
- CONCLUSION & PERSPECTIVES

Motivation

- Study of the velocity gradient tensor (VGT) $A_{ij} = \partial U_i / \partial x_j$ in turbulent flows.
 - \rightarrow VGT contains all the necessary information
 - \rightarrow its role may be made explicity by taking the spatial gradient of the Navier-Stokes equations

$$\partial \mathcal{A}/\partial t + \mathcal{U} \cdot \nabla \mathcal{A} = -\mathcal{A}^2 - \mathcal{H} + \nu \nabla^2 \mathcal{A}$$
, where $\mathcal{H}_{ij} = \partial^2 \mathcal{P}/\partial x_i \partial x_j$

Motivation

- Study of the velocity gradient tensor (VGT) $A_{ij} = \partial U_i / \partial x_j$ in turbulent flows.
 - → VGT contains all the necessary information
 - \rightarrow its role may be made explicity by taking the spatial gradient of the Navier-Stokes equations

$$\partial \mathcal{A}/\partial t + \mathcal{U} \cdot \nabla \mathcal{A} = -\mathcal{A}^2 - \mathcal{H} + \nu \nabla^2 \mathcal{A}$$
, where $\mathcal{H}_{ij} = \partial^2 \mathcal{P}/\partial x_i \partial x_j$

Study of the velocity gradient tensor

Motivation

- Study of the velocity gradient tensor (VGT) $A_{ij} = \partial U_i/\partial x_j$ in turbulent flows.
 - \rightarrow VGT contains all the necessary information
 - ightarrow its role may be made explicity by taking the spatial gradient of the Navier-Stokes equations

$$\partial \mathcal{A}/\partial t + \mathcal{U} \cdot \nabla \mathcal{A} = -\mathcal{A}^2 - \mathcal{H} + \nu \nabla^2 \mathcal{A}$$
, where $\mathcal{H}_{ij} = \partial^2 \mathcal{P}/\partial x_i \partial x_j$

Study of the velocity gradient tensor

Hermitian and skew-Hermitian decomposition approach

$$\mathcal{A} = \mathcal{S}^{\mathcal{A}} + \Omega^{\mathcal{A}}, \; \omega =
abla imes \mathcal{U}$$

alignment between the vorticity vector/scalar gradient and the eigenvectors of the strain rate tensor $\mathcal{S}^{\mathcal{A}}$

Motivation

- Study of the velocity gradient tensor (VGT) $A_{ij} = \partial U_i/\partial x_j$ in turbulent flows.
 - ightarrow VGT contains all the necessary information
 - \rightarrow its role may be made explicity by taking the spatial gradient of the Navier-Stokes equations

$$\partial \mathcal{A}/\partial t + \mathcal{U} \cdot \nabla \mathcal{A} = -\mathcal{A}^2 - \mathcal{H} + \nu \nabla^2 \mathcal{A}$$
, where $\mathcal{H}_{ij} = \partial^2 \mathcal{P}/\partial x_i \partial x_j$

Study of the velocity gradient tensor

Hermitian and skew-Hermitian decomposition approach

$$\mathcal{A} = \mathcal{S}^{\mathcal{A}} + \Omega^{\mathcal{A}}, \ \omega =
abla imes \mathcal{U}$$

alignment between the vorticity vector/scalar gradient and the eigenvectors of the strain rate tensor $\mathcal{S}^{\mathcal{A}}$

Eigenvalue-based approach¶

$$\lambda_i^3 + P^{\mathcal{A}}\lambda_i^2 + Q^{\mathcal{A}}\lambda_i + R^{\mathcal{A}} = 0$$

 $P^{\mathcal{A}}Q^{\mathcal{A}}R^{\mathcal{A}}$ invariants with the identites

$$P^{\mathcal{A}} = \sum_{i} \lambda_{i}, \ Q^{\mathcal{A}} = \sum_{i < j} \lambda_{i} \lambda_{j}, \ R^{\mathcal{A}} = \prod_{i} \lambda_{i}$$

¶Chong, M. S., Perry, A. E.

A general classification of three-dimensional flow fields *Physics of Fluids* (1990).

Purpose

 Unify eigenvalue-based approach and Hermitian/Skew-Hermitian approaches through a recently proposed Schur decomposition approach*

$$\mathcal{A} = \mathcal{B}^{\mathcal{A}} + \mathcal{C}^{\mathcal{A}}$$

• Use this decomposition to evaluate the influence of the compressibility on some statistical properties of the turbulent structures.

Conceptual Overview

- Schur decomposition $A = UTU^*$ which $T = \Lambda + N$
 - $\rightarrow \Lambda$ is diagonal matrix whose elements correspond to the eigenvalues of ${\cal A}$
 - $\rightarrow \mathcal{N}$ is an upper triangular matrix that represents the non-normal part of \mathcal{A}
- Tensors of the additive decomposition $\mathcal{A} = \mathcal{B}^{\mathcal{A}} + \mathcal{C}^{\mathcal{A}}$ are defined as

$$\mathcal{B}^{\mathcal{A}} = \mathcal{U}\Lambda\mathcal{U}^*$$
$$\mathcal{C}^{\mathcal{A}} = \mathcal{U}\mathcal{N}\mathcal{U}^*$$

* Keylock, C. J.

The Schur decomposition of the velocity gradient tensor for turbulent flows Journal of Fluid Mechanics (2015).

Purpose

 Unify eigenvalue-based approach and Hermitian/Skew-Hermitian approaches through a recently proposed Schur decomposition approach*

$$\mathcal{A} = \mathcal{B}^{\mathcal{A}} + \mathcal{C}^{\mathcal{A}}$$

 Use this decomposition to evaluate the influence of the compressibility on some statistical properties of the turbulent structures.

Conceptual Overview

- Schur decomposition $\mathcal{A} = \mathcal{U}\mathcal{T}\mathcal{U}^*$ which $\mathcal{T} = \Lambda + \mathcal{N}$
 - $ightarrow \Lambda$ is diagonal matrix whose elements correspond to the eigenvalues of ${m {\cal A}}$
 - $ightarrow \mathcal{N}$ is an upper triangular matrix that represents the non-normal part of \mathcal{A}
- Tensors of the additive decomposition $\mathcal{A} = \mathcal{B}^{\mathcal{A}} + \mathcal{C}^{\mathcal{A}}$ are defined as

$$\mathcal{B}^{\mathcal{A}} = \mathcal{U}\Lambda\mathcal{U}^*$$

$$\mathcal{C}^{\mathcal{A}} = \mathcal{U}\mathcal{N}\mathcal{U}^*$$

* Keylock, C. J.

The Schur decomposition of the velocity gradient tensor for turbulent flows Journal of Fluid Mechanics (2015).

NUMERICAL METHODS & DNS DATABASE

Numerical solver

- Cartesian Navier-Stokes solver, three-dimensional, compressible, unsteady, viscous solver
 - \rightarrow Convective fluxes are discretized using a $7^{\rm th}$ accurate hybrid upwinded-WENO scheme † .
 - ightarrow Molecular fluxes are discretized using 8^{th} order accurate centred difference scheme.
- $\bullet\,$ Temporal integration is performed using $3^{\rm rd}$ accurate total variation diminishing RK scheme.

DNS database

†Don, W. S. & Borges, R.

Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes Journal of Computational Physics (2013).

NUMERICAL METHODS & DNS DATABASE

Numerical solver

- $\bullet \ \ Cartesian \ Navier-Stokes \ solver, three-dimensional, compressible, unsteady, viscous \ solver$
 - \rightarrow Convective fluxes are discretized using a $7^{\rm th}$ accurate hybrid upwinded-WENO scheme † .
 - ightarrow Molecular fluxes are discretized using $8^{
 m th}$ order accurate centred difference scheme.
- \bullet Temporal integration is performed using $3^{\rm rd}$ accurate total variation diminishing RK scheme.

DNS database

Resolution	$\mathrm{R}\mathfrak{e}_\lambda$	Ma_t	$\mathcal{U}^{'}$	$\langle \varepsilon/ ho \rangle$	$\Delta x/\eta$	\mathcal{L}_t/η	λ/η	$\mathcal{S}k_3$	$\mathcal{F}l_3$
512^{3}	100	0.12	0.54	0.11	1.18	151	19.80	-0.43	5.50
512^{3}	100	0.32	0.53	0.10	1.17	154	19.79	-0.45	5.64
512^{3}	100	0.50	0.53	0.10	1.15	154	19.59	-0.50	5.53
512^{3}	100	0.59	0.46	0.11	1.29	181	19.59	-0.51	5.94
512^{3}	100	0.73	0.45	0.09	1.35	175	19.37	-0.71	6.10
512^{3}	100	0.89	0.45	0.07	1.41	172	19.05	-1.18	8.81

† Don, W. S. & Borges, R.

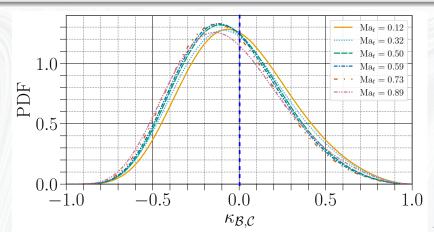
Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes Journal of Computational Physics (2013).

Estimate of the non-normality effects

$$\kappa_{\mathcal{B},\mathcal{C}} = \frac{\|\mathcal{B}\| - \|\mathcal{C}\|}{\|\mathcal{B}\| + \|\mathcal{C}\|}.$$

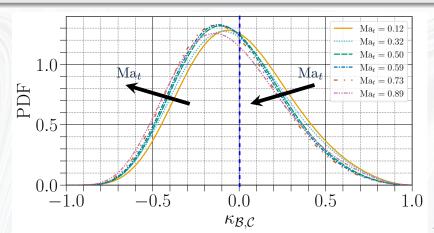
Estimate of the non-normality effects

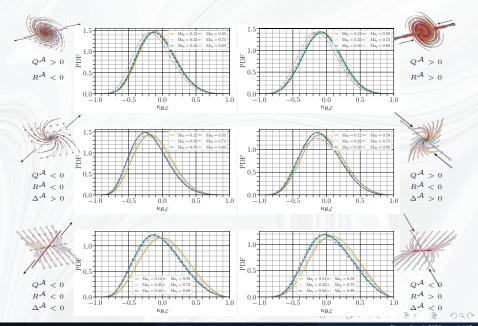
$$\kappa_{\mathcal{B},\mathcal{C}} = \frac{\|\mathcal{B}\| - \|\mathcal{C}\|}{\|\mathcal{B}\| + \|\mathcal{C}\|}.$$

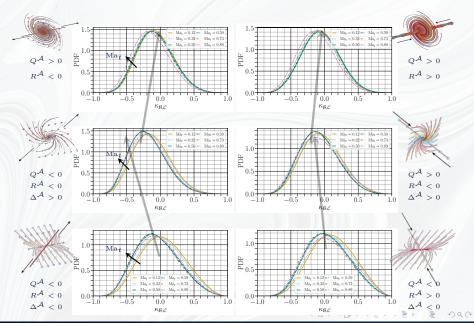


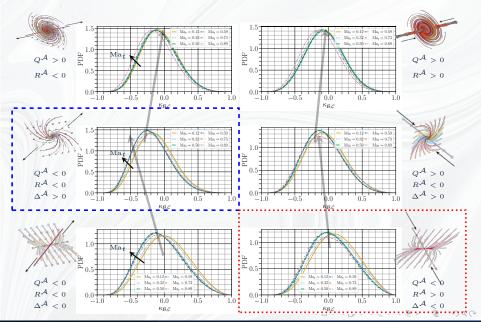
Estimate of the non-normality effects

$$\kappa_{\mathcal{B},\mathcal{C}} = \frac{\|\mathcal{B}\| - \|\mathcal{C}\|}{\|\mathcal{B}\| + \|\mathcal{C}\|}.$$







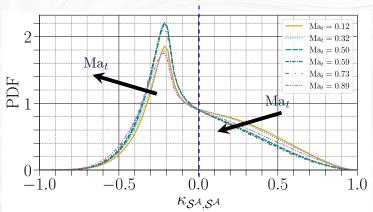


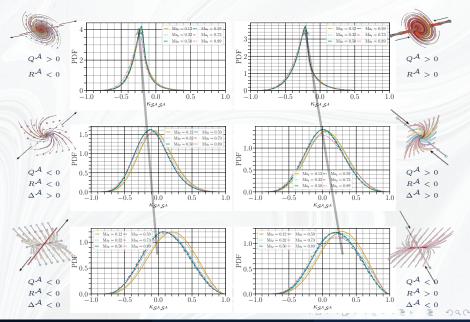
Estimate of the non-normality effects

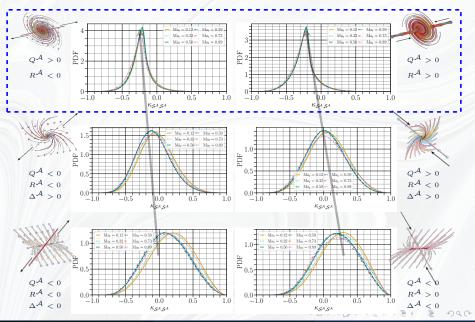
$$\kappa_{\mathcal{S}^{\mathcal{B}},\mathcal{S}^{\mathcal{C}}} = rac{\|\mathcal{S}^{\mathcal{B}}\| - \|\mathcal{S}^{\mathcal{C}}\|}{\|\mathcal{S}^{\mathcal{B}}\| + \|\mathcal{S}^{\mathcal{C}}\|}.$$

Estimate of the non-normality effects

$$\kappa_{\scriptscriptstyle \mathcal{S}^{\mathcal{B}}, \scriptscriptstyle \mathcal{S}^{\mathcal{C}}} = rac{\|\mathcal{S}^{\mathcal{B}}\| - \|\mathcal{S}^{\mathcal{C}}\|}{\|\mathcal{S}^{\mathcal{B}}\| + \|\mathcal{S}^{\mathcal{C}}\|}.$$







Intermediate eigenvalue parameter

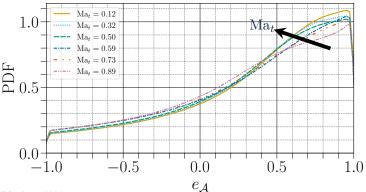
Normalization of the intermediate eigenvalue parameter of Lund* $e_{\mathcal{A}} = \frac{3\sqrt{6}R^{\mathcal{S}^{\mathcal{A}}}}{\left(-2Q^{\mathcal{S}^{\mathcal{A}}}\right)^{3/2}}$

* Lund, T. S. & Rogers, M. M.

An improved measure of strain state probability in turbulent flows *Physics of Fluids* (1994).

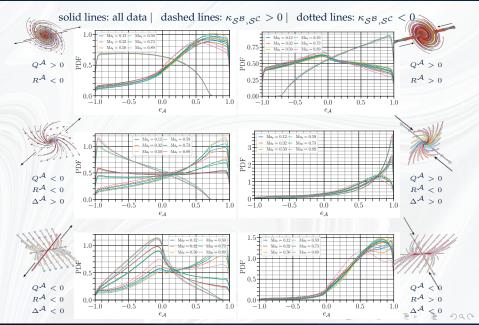
Intermediate eigenvalue parameter

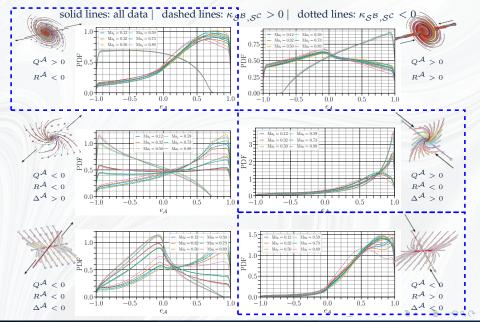
Normalization of the intermediate eigenvalue parameter of Lund* $e_{\mathcal{A}} = \frac{3\sqrt{6}R^{\mathcal{S}^{\mathcal{A}}}}{\left(-2Q^{\mathcal{S}^{\mathcal{A}}}\right)^{3/2}}$



*Lund, T. S. & Rogers, M. M.

An improved measure of strain state probability in turbulent flows *Physics of Fluids* (1994).





CONCLUSION & PERSPECTIVES

Conclusion

- This approach provides a means to link the eigenvalue and strain-rotation based approaches to studying the VGT.
- The results clarify the way in which the different topology in different parts of $Q^A R^A$ space affect the kinematics and dynamics of the flow.
- Compressibility show some noticeable effects when disaggregating normal and non-normal effects.

CONCLUSION & PERSPECTIVES

Conclusion

- This approach provides a means to link the eigenvalue and strain-rotation based approaches to studying the VGT.
- The results clarify the way in which the different topology in different parts of $Q^A R^A$ space affect the kinematics and dynamics of the flow.
- Compressibility show some noticeable effects when disaggregating normal and non-normal
 effects.

Perspectives

- The next stage is to revisit some of the modeling approaches that already exist and to see if we
 can develop them in a more effective fashion using this approach.
- Moving beyond the HIT test case.

Thanks for your attention

Acknowledgments

