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MOTIVATION & PURPOSE

® Study of the velocity gradient tensor (VGT) A;; = dU; /0x; in turbulent flows.

— VGT contains all the necessary information

— its role may be made explicity by taking the spatial gradient of the Navier-Stokes equations

DA/t +U-VA=—A* —H + vV>A, where H;; = 0°P/0x;0z;
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MOTIVATION & PURPOSE

® Study of the velocity gradient tensor (VGT) A;; = dU; /0x; in turbulent flows.
— VGT contains all the necessary information

— its role may be made explicity by taking the spatial gradient of the Navier-Stokes equations

DA/t +U-VA=—A* —H + vV>A, where H;; = 0°P/0x;0z;

Study of the velocity gradient tensor

( A 4 )

Hermitian and skew-Hermitian decomposi-| | Eigenvalue-based approach¥
tion approach

A +PANZ+ QAN +RA=0
A A
= Q =
A=A yw=Vxu PAQARA invariants with the identites
alignment between the vorticity vector/scalar
gradient and the eigenvectors of the strain rate PA = Z Do @F = Z Aidj, RA = H Aq
tensor S B i

i<j
. _ J

@ 9 Chong, M. S, Perry, A. E.

A general classification of three-dimensional flow fields
Physics of Fluids (1990).
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MOTIVATION & PURPOSE

® Unify eigenvalue-based approach and Hermitian/Skew-Hermitian approaches through a re-
cently proposed Schur decomposition approach*

A=BA+cA

® Use this decomposition to evaluate the influence of the compressibility on some statistical
properties of the turbulent structures.

@ *Keylock, C.

The Schur decomposition of the velocity gradient tensor for turbulent flows

Journal of Fluid Mechanics (2015).
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MOTIVATION & PURPOSE

® Unify eigenvalue-based approach and Hermitian/Skew-Hermitian approaches through a re-
cently proposed Schur decomposition approach*

A=B4+cA

® Use this decomposition to evaluate the influence of the compressibility on some statistical
properties of the turbulent structures.

Conceptual Overview

® Schur decomposition A = UTU* which T = A + N

— A is diagonal matrix whose elements correspond to the eigenvalues of A
— N is an upper triangular matrix that represents the non-normal part of A

® Tensors of the additive decomposition A = BA + CA are defined as

BA = UAU*
CA =UNU*

@ *Keylock, C.

The Schur decomposition of the velocity gradient tensor for turbulent flows
luid Me

Journ, Mechanics (2015).
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NUMERICAL METHODS & DNS DATABASE

® Cartesian Navier-Stokes solver, three-dimensional, compressible, unsteady, viscous solver
— Convective fluxes are discretized using a 7t accurate hybrid upwinded-WENO schemef .
— Molecular fluxes are discretized using 8th order accurate centred difference scheme.

® Temporal integration is performed using 3" accurate total variation diminishing RK scheme.

@ T Don, W. S. & Borges, R.

Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes
Journal of Computational Physics (2013).




NUMERICAL METHODS & DNS DATABASE

Numerical solver

® Cartesian Navier-Stokes solver, three-dimensional, compressible, unsteady, viscous solver
— Convective fluxes are discretized using a 7t accurate hybrid upwinded-WENO schemef .
— Molecular fluxes are discretized using 8th order accurate centred difference scheme.

® Temporal integration is performed using 3" accurate total variation diminishing RK scheme.

DNS database

Resolution  Re) ‘ May { u (e/p) Az/n Li/n Nn  Sks Fls

5123 100 | 012 | 054 0.11 1.18 151 19.80 -043 5.50
5% 100 | 0.32 | 053  0.10 1.17 154 19.79 -045 5.64
5123 100 | 0.50 | 0.53  0.10 1.15 154 19.59 -050 5.53
5123 100 | 059 | 046 0.11 1.29 181 19.59 -051 594
5123 100 | 073 | 045 0.09 1.35 175 1937 -071 6.10
5123 100 | 0.89 | 045 0.07 1.41 172 19.05 -1.18 881

@ T Don, W. S. & Borges, R
Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes
Journal of Computational Physics (2013).
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NUMERICAL RESULTS

Estimate of the non-normality effects

Use of standardized difference to understand when the non-normal effects are significant

_ I8l - liel
1B+ licll

KkB,c

December 4, 2020 5/



NUMERICAL RESULTS

Estimate of the non-normality effects

Use of standardized difference to understand when the non-normal effects are significant
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NUMERICAL RESULTS

Estimate of the non-normality effects

Use of standardized difference to understand when the non-normal effects are significant
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NUMERICAL RESULTS
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NUMERICAL RESULTS
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NUMERICAL RESULTS

Estimate of the non-normality effects

Use of standardized difference to understand when the non-normal effects are significant
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NUMERICAL RESULTS

Intermediate eigenvalue parameter

Normalization of the intermediate eigenvalue parameter of Lund* e 4 =

@ *Lund, T. S. & Rogers, M. M.

An improved measure of strain state probability in turbulent flows
Physics of Fluids (1994),
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NUMERICAL RESULTS

Intermediate eigenvalue parameter
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An improved measure of strain state probability in turbulent flows
Physics of Fluids (1994)
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NUMERICAL RESULTS
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CONCLUSION & PERSPECTIVES

® This approach provides a means to link the eigenvalue and strain-rotation based approaches
to studying the VGT.

® The results clarify the way in which the different topology in different parts of @ — R4 space
affect the kinematics and dynamics of the flow.

® Compressibility show some noticeable effects when disaggregating normal and non-normal
effects.
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CONCLUSION & PERSPECTIVES

® This approach provides a means to link the eigenvalue and strain-rotation based approaches
to studying the VGT.

® The results clarify the way in which the different topology in different parts of @ — R4 space
affect the kinematics and dynamics of the flow.

® Compressibility show some noticeable effects when disaggregating normal and non-normal
effects.

Perspectives

® The next stage is to revisit some of the modeling approaches that already exist and to see if we
can develop them in a more effective fashion using this approach.

® Moving beyond the HIT test case.
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