

# Skewness effects on the turbulence structure in a high-speed compressible and multi-component inert mixing layers

Radouan Boukharfane\*, Aimad Er-raiy<sup>§</sup>, Matteo Parsani<sup>§</sup> & Bilel Hadri

\* Mohammed VI Polytechnic University (UM6P), MSDA group, Ben Guerir, Morocco

King Abdullah University of Science and Technology (KAUST), CEMSE/ECRC, Thuwal, KSA

King Abdullah University of Science and Technology (KAUST), Supercomputing Core Laboratory, Thuwal, KSA







King Abdullah University of Science and Technology

- Introduction
- Numerical setup
- Numerical results
- 4 Conclusions & perspectives

#### Problem description

 Scramjet engines are exciting candidates for the next generation air-breathing propulsion.

Numerical results

- Mixing layer is a classical paradigm case for free-shear turbulent flows.
- Emergence and evolution of turbulent features exhibit high sensitivity to the parametric set-up of the test case.
  - √ Compressibility effects quantified with convective Mach number

$$\mathrm{Ma}_{c}=(\mathbb{U}^{h}-\mathbb{U}^{l})/(\mathfrak{c}^{h}+\mathfrak{c}^{l})$$

✓ Pressure influence quantified with the gradient Mach number

$$Ma_g = S\ell/\langle \mathfrak{c} \rangle$$

- ✓ Inlet density ratio  $\mathfrak{s} = \varrho^h/\varrho^l$
- Most classical analysis assume that  $\mathbb{U}^h$  and  $\mathbb{U}^l$  are perfectly aligned.

#### Problem description

- Few studies dedicated to the analysis of skewing effect
  - ✓ Skewing effects on incompressible shear layer (Meldi *et al.* 2020) $^1$
  - ✓ Sweeping effects in a backward-facing step (Kaltenbach 2004)<sup>2</sup>
- Numerous features of the inlet flow can affect the features of the turbulent mixing region.

### Assessment of the present study

- Investigation of the skewing effects on shear layer development
- Inert configuration
- Direct numerical simulations: no turbulence models
- High-speed combustion regimes: Scramjet engines
- Multicomponent transport
- Gas mixtures: hydrogen, air ...

Meldi, M., Mariotti, A., Salvetti, M. V., & Sagaut, P. (JFM-2020). Numerical investigation of skewed spatially evolving mixing layers.

<sup>&</sup>lt;sup>2</sup> Kaltenbach, H. J. (EJMB/F-2004). Turbulent flow over a swept backward-facing step.

#### COMPUTATIONAL METHODOLOGY

INTRODUCTION

 Cartesian Navier-Stokes solver, three-dimensional, compressible, unsteady, viscous, multi-species, massively parallel in-house solver

$$\begin{cases} \partial_{t}\varrho + \partial_{j}\left(\varrho u_{j}\right) = 0, \\ \partial_{t}\left(\varrho u_{i}\right) + \partial_{j}\left(\varrho u_{i}u_{j}\right) + \partial_{i}\mathfrak{p} = \partial_{j}\tau_{ij}, \\ \partial_{t}\left(\varrho \mathfrak{e}_{t}\right) + \partial_{j}\left(\varrho \mathfrak{e}_{t} + \mathfrak{p}\right)u_{i} = \partial_{j}\left(u_{i}\tau_{ij}\right) - \partial_{j}\mathfrak{q}_{j}, \\ \partial_{t}\left(\varrho \mathcal{Y}_{\alpha}\right) + \partial_{j}\left(\varrho u_{j}\mathcal{Y}_{\alpha}\right) = -\partial_{j}\left(\varrho \mathcal{Y}_{\alpha}u_{\alpha j}\right), \quad \alpha \in \mathcal{S} \\ \mathfrak{p} = \varrho \mathcal{R}\mathcal{T}/\mathcal{W}, \quad \mathcal{W} = 1/\left(\Sigma_{\alpha \in \mathcal{S}}\mathcal{Y}_{\alpha}/\mathcal{W}_{\alpha}\right), \quad h_{\alpha}\left(\mathcal{T}\right) = \varphi_{\alpha}\mathcal{R}\mathcal{T}/\mathcal{W}_{\alpha} \end{cases}$$

with the polynomial  $\varphi_{\alpha}$  being determined from JANAF tables

- Convective fluxes are discretized hybrid energy-conservative shock capturing scheme in locally conservative form with *Ducros* sensor<sup>a</sup>.
- Molecular fluxes: Laplacian form with fourth-order formulas.
- Temporal integration: RK3 scheme
- Multicomponent transport (Soret and Dufour): EGLIB library<sup>b</sup>.

<sup>&</sup>lt;sup>a</sup>Pirozzoli, S. (JCP-2010). Generalized conservative approximations of split convective derivative operators.

<sup>&</sup>lt;sup>b</sup>Ern, A., & Giovangigli, V. (JCP-1995). Fast and accurate multicomponent transport property evaluation.

#### Numerical configuration

INTRODUCTION

- $L_1 \times L_2 \times L_3 = 520\delta_{\omega,0} \times 120\delta_{\omega,0} \times 60\delta_{\omega,0}, N_1 \times N_2 \times N_3 = 2500 \times 380 \times 180.$
- Dirichlet BC at the inlet, perfectly non-reflecting BCs at the the outflow and the  $x_2$ -directions, and periodic BCs along  $x_3$ -directions.
- Air-fuel (OConaire): H<sub>2</sub>, H, H<sub>2</sub>O, HO<sub>2</sub>, HO<sub>2</sub>, O<sub>2</sub>, O, OH, N<sub>2</sub>
- $\text{Re}_{\omega} = \bar{\rho} \Delta U \delta_{\omega,0} / \bar{\mu} = 640$ ,  $\text{Ma}_{c} = 0.48$ ,  $\xi = 0^{\circ}$ ,  $5^{\circ}$ ,  $10^{\circ}$  and  $15^{\circ}$ .



#### Instantaneous Flow



#### QUANTITATIVE ANALYSIS

Introduction

• Growth rates of  $\delta_{\omega}$  and  $\delta_{\theta} = \frac{1}{\varrho_0} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \langle \varrho \rangle \frac{\langle \mathbf{u}_1 \rangle_f - \mathbb{U}^h}{\|\mathbf{u}^h - \mathbf{u}^I\|} \left( 1 - \frac{\langle \mathbf{u}_1 \rangle_f - \mathbb{U}^h}{\|\mathbf{u}^h - \mathbf{u}^I\|} \right) dx_2 dx_3$ 



#### REYNOLDS STRESSES



- As  $\xi$  get higher  $\mathcal{R}_{33} > \mathcal{R}_{11} > \mathcal{R}_{22} > \mathcal{R}_{12} \equiv \mathcal{R}_{23} > \mathcal{R}_{13}$ .
- Skewing SLs induce more intense turbulence and enlarge the momentum exchange between the turbulent structures and the inflow mainstream.

#### Anisotropy effect

- Reynolds stress anisotropy  $\mathfrak{b}_{ii}^{\mathcal{K}} = \frac{\mathcal{R}_{ij} \frac{2}{3} \delta_{ij} \mathcal{K}}{2^{\mathcal{K}}}$ .
- Invariants of  $\mathbf{b}^{\mathcal{K}}$ :  $\mathbb{II}^{\mathcal{K}} = -\frac{1}{2} \left( \Lambda_1^2 + \Lambda_2^2 + \Lambda_3^2 \right)$ ,  $\mathbb{III}^{\mathcal{K}} = \frac{1}{3} \left( \Lambda_1^3 + \Lambda_2^3 + \Lambda_3^3 \right)$ .



#### CONCLUSIONS & PERSPECTIVES

#### Perspectives

INTRODUCTION

- Inlet skewing tends to amplify the inlet disturbances resulting in a faster increase of the mixing process
  - ✓ An increase of the cross-wise velocity fluctuation energy.
- Longitudinal evolution of vorticity thickness exhibit remarkable modification with inlet skewing

#### Perspectives

- application towards flow control, and reliable comparison.
- Investigation of the skewing effects in combination with inlet perturbations.
- Heat release effects.
- Variations of the Reynolds number.

Introduction

# Thanks for tuning in! Please leave comments & questions

## Acknowledgments

